赵怀松,中共党员,应用物理系,凝聚态物理专业毕业。目前主要从事冷原子物理和超导电性的理论研究。E-mail:hszhao@qdu.edu.cn
教育和工作经历
2021.01-至今 amjs澳金沙门线路首页(中国)有限公司-百度百科 副教授
2013.07 — 2020.12 amjs澳金沙门线路首页(中国)有限公司-百度百科 讲师
2008.09 — 2013.06 北京师范大学物理系 博士
2004.09 — 2008.07 山东师范大学物理与电子科学学院 本科
主要教授课程
(1)热力学统计物理 (2)力学 (3)新能源专业实验
其中《热力学 统计物理》多次进入评教前30%
2022年获得amjs澳金沙门线路首页第十一届青年教师教学大奖赛三等奖
主持国家自然科学基金项目2项:
1、铜氧化物高温超导体中绝缘体-超导体转变及相关物理性质的研究,5万元,2015.01-2015.12
2、铜氧化物高温超导体在极欠掺杂浓度情况下反常物理性质的研究,20万元,2016.01-2018.12
相关链接:
1、Researchgate: Huaisong Zhao (researchgate.net)
2、ORCID:https://orcid.org/0000-0001-8774-9169
部分已发表论文:
[18] Zheng Gao, Lianyi He, Huaisong Zhao*, Shi-Guo Peng*, and Peng Zou*, Dynamic structure factor of one-dimensional Fermi superfluid with spin-orbit coupling, Phys. Rev. A 107, 013304 (2023).
[17] Rui Han, Feng Yuan, and Huaisong Zhao*, Phase diagram, band structure and density of states in two-dimensional attractive Fermi-Hubbard model with Rashba spin-orbit coupling, New J. Phys. 25, 023001 (2023).
[16] Rui Han, Feng Yuan*, and Huaisong Zhao*, Single-particle excitations and metal-insulator transition of ultracold Fermi atoms in one-dimensional optical lattice with spin-orbit coupling, Europhysics Letters 139, 25001 (2022).
[15] Lingchii Kong, Genwang Fan, Shi-Guo Peng, Xiao-Long Chen*, Huaisong Zhao*, and Peng Zou*, Dynamical generation of soliton in one-dimensional spin-orbit coupled Fermi superfluid, Phys. Rev. A 103, 063318 (2021).
[14] Ruiliang Qu, Ke Li, Yuxi Bai, and Huaisong Zhao*, The Diferent Temperature Dependent Behaviors of Dark Solitons in Fermi Superfuid Gases Along the BCS–BEC Crossover, Journal of Low Temperature Physics, 205, 135 (2021).
[13] Peng Zou*, Huaisong Zhao, Lianyi He, Xia-Ji Liu, and Hui Hu, Dynamic structure factors of a strongly interacting Fermi superfluid near an orbital Feshbach resonance across the phase transition from BCS to Sarma superfluid, Phys. Rev. A 103, 053310 (2021).
[12] Huaisong Zhao, Xiaoxu Gao,Wen Liang, Peng Zou* and Feng Yuan*, Dynamical structure factors of a two-dimensional Fermi superfluid within random phase approximation, New J. Phys. 22, 093012 (2020).
[11] Yuchen Zhang, Sheng Xu, Feng Yuan*, Huaisong Zhao*, Yong Zhou, Effect of the nonmonotonic d-wave superconducting gap on the electronic Raman scattering of electron-doped cuprate superconductor, Philosophical Magazine 100, 1889 (2020).
[10] Huaisong Zhao*, Jiasheng Qian, Sheng Xu, Feng Yuan, The electronic structure and spin-charge separation of one-dimensional SrCuO2, Modern Physics Letters B 33, 1950006 (2019).
[9] Huaisong Zhao, Yingping Mou, Shiping Feng*, Correlation Between Charge Order and Second-Neighbor Hopping in Cuprate Superconductors, Journal of Superconductivity and Novel Magnetism 31, 683 (2018).
[8] Huaisong Zhao, Xu Yan, Yong Wan, Feng Yuan*, Effect of the Pseudogap on the Quasiparticle Transport from the Static Limit to Finite Energy for Cuprate Superconductors, Annalen der Physik 530, 1800184 (2018).
[7] He Gao, Feng Yuan, Sha-ou Chen, Huaisong Zhao*, The anomalous optical conductivity in hole-doped cuprate superconductors, Solid State Communications 270, 87 (2018).
[6] Chunsheng Ma, Rui Qi, Feng Yuan, Sha-ou Chen, Huaisong Zhao*, Doping and energy dependences of thermal conductivity in cuprate superconductors, Modern Physics Letters B 31, 1750344 (2017).
[5] Yunxue Teng, He Gao, Chunsheng Ma, Feng Yuan, Huaisong Zhao*, The non-Drude type of optical conductivity in cuprates, Modern Physics Letters B 31, 1750204 (2017).
[4] Huaisong Zhao, Deheng Gao, Shiping Feng*, Charge Order and Peak-dip-hump Structure in Pseudogap Phase of Cuprate Superconductors, Journal of Superconductivity and Novel Magnetism 29, 3027 (2016).
[3] Huaisong Zhao, Deheng Gao, Shiping Feng*, Pseudogap-generated a coexistence of Fermi arcs and Fermi pockets incuprate superconductors, Physica C 534, 1 (2016).
[2] Shiping Feng*, Huaisong Zhao, Zheyu Huang, Two gaps with one energy scale in cuprate superconductors, Physical Review B, 2012, 85(5): 054509-054515.
[1] Zheyu Huang, Huaisong Zhao, Shiping Feng*, Magnetic-field-induced reduction of the low-temperature superfluid density in cuprate superconductors, Physical Review B, 2011, 83(14): 144524-144529.